The Pharmacokinetics and Pharmacodynamics of Lidocaine-Loaded Biodegradable Poly(lactic-co-glycolic acid) Microspheres

نویسندگان

  • Jianming Liu
  • Xin Lv
چکیده

The purpose of this study was to develop novel lidocaine microspheres. Microspheres were prepared by the oil-in-water (o/w) emulsion technique using poly(D,L-lactide-co-glycolide acid) (PLGA) for the controlled delivery of lidocaine. The average diameter of lidocaine PLGA microspheres was 2.34±0.3 μm. The poly disperse index was 0.21±0.03, and the zeta potential was +0.34±0.02 mV. The encapsulation efficiency and drug loading of the prepared microspheres were 90.5%±4.3% and 11.2%±1.4%. In vitro release indicated that the lidocaine microspheres had a well-sustained release efficacy, and in vivo studies showed that the area under the curve of lidocaine in microspheres was 2.02-2.06-fold that of lidocaine injection (p<0.05). The pharmacodynamics results showed that lidocaine microspheres showed a significant release effect in rats, that the process to achieve efficacy was calm and lasting and that the analgesic effect had a significant dose-dependency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loading of Gentamicin Sulfate into Poly (Lactic-Co-Glycolic Acid) Biodegradable Microspheres

  Objective: In dental treatments, use of carriers for targeted antibiotic delivery would be optimal to efficiently decrease microbial count. In this study, gentamicin was loaded into polylactic co-glycolic acid (PLGA) microspheres and its release pattern was evaluated for 20 days.   Methods: In this experimental study, PLGA microspheres loaded with gentamycin were produced by the W/O/W method....

متن کامل

Preparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method

Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein parti...

متن کامل

Preparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method

Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein parti...

متن کامل

Potential differentiation ability of gingiva originated human mesenchymal stem cell in the presence of tacrolimus

The aim of the present study is to evaluate the potential differentiation ability of gingiva originated human mesenchymal stem cell in the presence of tacrolimus. Tacrolimus-loaded poly(lactic-co-glycolic acid) microspheres were prepared using electrospraying technique. In vitro release study of tacrolimus-loaded poly(lactic-co-glycolic acid) microspheres was performed in phosphate-buffered sal...

متن کامل

Injectable microparticle-gel system for prolonged and localized lidocaine release. II. In vivo anesthetic effects.

Current treatment protocols for postoperative pain are beset by either the short duration of the anesthetic effect or requirement of hospitalization of the patients. We reported herein a novel treatment by applying to the surgical site a biodegradable microparticle-gel system for prolonged and localized release of encapsulated anesthetic drugs. In a previous publication, lidocaine-loaded poly(D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014